
地形データを編集する。

３Ｄモデリングデータをプログラムへ実装する。

DirectX 用の .x 形式で保存する。

保存形式に、(.x)を選択して保存する。

データを保存すると、このようになります。

（使用するテクスチャも同じフォルダに保存する必要

があります。）

ここでは、ground.x というファイル名で保存していますので、以下の解説では、このファイル名を使用

します。

名前を付けて保存。

D3DQuickLib を実装したアプリケーションのプロジェクトフォルダを開きます。

このフォルダにある、

「Debug」フォルダを開きます。

すると、ウィンドウはこのようになっているはずです。

ここに先ほど保存した

メッシュ(.x)形式のデータを

フォルダごと貼り付けます。

ここでは、groundというフォルダの中に左図のよう

なファイルが入っているものとします。

ファイルは、

ground.x メッシュ形式データ

ground_skin.bmp テクスチャファイル。

プログラムリスト１を参照に、プログラムを改造します。

すると、先ほどの地形が表示されるようにな

りました。

ただ、カメラ位置が地表にくっついている

為、モデルが見えにくい状態にあります。

次に、カメラ位置を設定します。

プログラムリスト２を参考に、プログラムを改造します。

ポイントは、以下の部分。CD3DEnv が内部で使用しているビュー行列を取得して、取得されたビュー行列

に対して、カメラの場所と向きをDirectX で決められた方式で設定します。

D3DXMATRIX *pView;

pView = g_pD3DEnv->GetSystemView();

D3DXMatrixLookAtLH(pView,&D3DXVECTOR3(0,2.0f,-10.0f),

 &D3DXVECTOR3(0.0f, 0.0f, 0.0f),

 &D3DXVECTOR3(0.0f, 1.0f, 0.0f));

これは、以下の設定でモデルを表示させたも

のです。

カメラ位置　x:0.0 y:2.0 z:-10.0
カメラ視点　x:0.0 y:0.0 z:0.0
カメラ上方向　x:0.0 y:1.0 z:0.0

カメラ上方向は文字通りカメラの上になる方

向をベクトルで示したものです。カメラのひ

ねりを表現するのに使用します。

D3DXMatrixLookAtLH 関数については、DirectX 付属のドキュメントを参照して下さい。

（日本語訳もダウンロード可能です。）

地形にキャラクタを表示する。

表示させるキャラクタのモデルを用意します。

ここでは、先ほどの地形と同じフォルダに、

「dog.x」というファイルを用意しています。

プログラムリスト３を参考に、プログラムを改造します。改造後実行すると、次のようになります。

地形の中央付近に、「dog.x」が表示されまし

た。

表示されているだけで何らの動きもありませ

ん。

次に、このキャラクターを動かします。

プログラムリスト４を参考に、プログラムを改造します。ポイントは以下の３箇所。

if (g_pD3DEnv->GetDI8KeyState(DIK_LEFT)){
g_vPos.x -= 0.1f * timeElapsed;

}
if (g_pD3DEnv->GetDI8KeyState(DIK_RIGHT)){

g_vPos.x += 0.1f * timeElapsed;
}
if (g_pD3DEnv->GetDI8KeyState(DIK_UP)){

g_vPos.z += 0.1f * timeElapsed;
}
if (g_pD3DEnv->GetDI8KeyState(DIK_DOWN)){

g_vPos.z -= 0.1f * timeElapsed;
}

D3DXMatrixTranslation(&matWorld,g_vPos.x,g_vPos.y,g_vPos.z);
lpd3ddev->SetTransform(D3DTS_WORLD, &matWorld);

D3DXVECTOR3 g_vPos = D3DXVECTOR3(0,0,0);

ポイント①　キャラクタ位置を示すベクトル型グローバル変数の宣言。

ポイント②　キー入力に応じて位置データを更新

ポイント③　キャラクタ位置の情報からワールド行列を算出

キャラクタが動くようになりました。

ただ、カメラが動かないので、市販のゲーム

のように、動きに応じて背景がスクロールさ

れるような事がありません。

少し見にくいですね。

カメラを動かします。プログラムリスト５を参考に、プログラムリスト２の改造で手を加えたカメラ位置

の設定を少し改造します。

ポイントは、以下の部分。

D3DXMatrixLookAtLH(pView,&D3DXVECTOR3(g_vPos.x,g_vPos.y+2.0f,g_vPos.z-10.0f),
 &D3DXVECTOR3(g_vPos.x, g_vPos.y, g_vPos.z),

 &D3DXVECTOR3(0.0f, 1.0f, 0.0f));

これでキャラクタは常に画面の中央です。

ただ、この地形。起伏がある為に、キャラク

タが地形にめりこんでしまいます。

次に、プログラムリスト６を参考に、プログラムを改造し、高度判定を入れます。

ポイントは以下の部分。

D3DXVECTOR3 vecMin, vecMax, vecNormal;
FLOAT fAlt,fDist;
g_pFloor->GetBoundingBox(&vecMin, &vecMax);
g_pFloor->ProbeTheGroundAltitude(&g_vPos,&vecMin,&vecMax,&vecNormal,&fAlt,&fDist);

g_vPos.y = fAlt;

ProbeTheGroundAltitude は、D3DQuickLib

が提供する、CFloor クラスのメンバで、

メッシュの指定された座標における高度を

判定し、返すメソッド。ポリゴンのあたり判

定は処理が重いので、処理対象とするポリ

ゴンを、指定した立方体内に限定する機能

がある。しかし、今回、大してポリゴンを使

用していないので、常に地形全体を示す立

方体を用意している。ここでは地形モデル

のオブジェクトから、バウンディングボッ

クス（全体を囲む最小の立方体）を取得し、

それを当たり判定を行う範囲として使用し

ている。

最後にキャラの向き、プログラムリスト７を参考に、プログラムを改造。

ポイントは以下の部分。

D3DXMatrixTranslation(&matWorld,g_vPos.x,g_vPos.y,g_vPos.z);

D3DXMATRIX matRotation;

D3DXMatrixRotationY(&matRotation,g_fAngle);

matWorld = matRotation * matWorld;

lpd3ddev->SetTransform(D3DTS_WORLD, &matWorld);

キャラクターを表示する前に、まず移動の為の行列を作り、次に回転の為の行列を算出。続いて、その二

つの行列を合成して、（回転→移動）を行う行列を作り、ワールド行列として設定している。

回転行列を作る為には、Direct3D が提供する関数の、D3DXMatrixRotationY を使用している。詳細は、

DirectX のドキュメントを参照されたい。

回転の計算に使用している、g_fAngle は角

度を表すグローバル変数で、キー入力を行っ

た時に、数値を更新している。

詳細はプログラムリストを参照されたい。

